Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. biol ; 79(4): 686-696, Nov. 2019. graf
Article in English | LILACS | ID: biblio-1001486

ABSTRACT

Abstract Snails are essential to complete the life cycle of the metastrongylid nematode Angiostrongylus cantonensis, the causative agent of infections in domestic and wild animals, mainly rodents, and also of neural angiostrongyliasis or eosinophilic meningitis in humans. There are many reports of mollusks that can act as intermediate hosts of this parasite, especially freshwater snails and the African giant Achatina fulica. The terrestrial gastropod Bulimulus tenuissimus is widely distributed in Brazil and other species of the same genus occur in Brazil and other countries, overlapping regions in which there are reports of the occurrence of A. cantonensis and angiostrongyliasis. In spite of this, there are no records in the literature of this species performing the role of intermediate host to A. cantonensis. The present study analyzed the experimental infection with first-stage larvae of A. cantonensis, under laboratory conditions, of B. tenuissimus, by using histology and electron microscopy techniques. Three weeks after exposure to L1 larvae, it was possible to recover L3 larvae in small numbers from the infected snails. Developing larvae were observed in the cephalopedal mass (foot), ovotestis, and mantle tissues, being located inside a granulomatous structure composed of hemocyte infiltration, but there was no calcium or collagen deposition in these structures in significant amounts. In the third week post exposure, it was possible observe a sheath around the developing larvae. The infected snails presented reduction in the fibrous muscular tissue in the foot region, loss of the acinar organization in the digestive gland, with increase of amorphous material inside the acini and loss of epithelial pattern of nuclear organization in the acinar cells. However, the ovotestis seemed unaffected by the infection, since there was a large number of developing oocytes and spermatozoa in different stages of formation. The digestion of infected snails allows us the third-stage recovery rate of 17.25%, at 14 days post exposure to the L1. These L3 recovered from B. tenuissimus were used to infect rats experimentally, and 43 days post infection first-stage (L1) larvae of A. cantonensis were recovered from fresh feces. The results presented constituted the first report of the role of B. tenuissimus as an experimental intermediate host to A. cantonensis and shed some light on a possible problem, since the overlapping distribution of B. tenuissimus and A. cantonensis in Brazil and other countries where different species of Bulimulus occur enables the establishment and maintenance of the life cycle of this parasite in nature, with wild rodents as reservoirs, acting as a source of infection to humans, causing neural angiostrongyliasis.


Resumo Os moluscos são um requisito essencial para a conclusão do ciclo de vida pelo nematoide metastrogilídeo Angiostrongylus cantonensis, o agente causador de infecções em animais domésticos e selvagens, principalmente roedores, e também de angiostrongilíase neural ou meningite eosinofílica em humanos. Há muitos relatos de moluscos que podem atuar como hospedeiro para este parasito, sendo o foco dado aos moluscos de água doce e no gigante africano Achatina fulica. O gastrópode terrestre Bulimulus tenuissimus é amplamente distribuído no território brasileiro e há outras espécies do mesmo gênero que ocorrem no Brasil e outros países, sobrepondo-se às regiões em que há relatos à ocorrência de A. cantonensis e angiostornigilíase. Apesar disso, não há registro na literatura, acerca desta espécie como hospedeiro intermediário para A. cantonensis. O presente estudo teve como objetivo verificar a possibilidade de infectar experimentalmente, utilizando larvas L1 de A. cantonensis, em condições laboratoriais, o molusco B. tenuissimus, utilizando técnicas de histologia e microscopia eletrônica. Três semanas após a exposição às larvas L1, foi possível recuperar larvas L3 dos moluscos infectados, em pequena quantidade. As larvas em desenvolvimento foram observadas na massa cefalopediosa (pé), ovotestis e nos tecidos do manto, sendo localizadas dentro de uma estrutura granulomatosa constituída por infiltração hemocitária, mas não houve deposição de cálcio ou colágeno nessas estruturas em quantidade significativa. Na terceira semana pós exposição, foi possível observar uma bainha ao redor das larvas em desenvolvimento. Os caracóis infectados apresentaram redução no tecido muscular fibroso na região do pé, perda da organização acinar na glândula digestiva, com aumento de material amorfo dentro dos ácinos e perda do padrão epitelial da organização nuclear nas células acinares. No entanto, o ovotestis, pareceu não ser afetado pela infecção, uma vez que houve um grande número de oócitos em desenvolvimento e espermatozóides em diferentes estágios de formação. A digestão dos moluscos infectados nos permitiu a recuperação de larvas de terceiro estágio (17,25%), aos 14 dias após a exposição à L1 de A. cantonensis . Estas L3 recuperadas de B. tenuissimus foram utilizados para infectar ratos experimentalmente, e 43 dias após a infecção, as larvas do primeiro estágio (L1) foram recuperadas de fezes frescas. Os resultados apresentados representam o primeiro registro do papel de B. tenuissimus como hospedeiro intermediário experimental de A. cantonensis e trazem alguma luz a um problema, até então silencioso, uma vez que a sobreposição da distribuição de B. tenuissimus e A. cantonensis no Brasil, e outros países, onde as diferentes espécies de Bulimulus ocorrem, torna possível o estabelecimento e manutenção do ciclo de vida deste parasito na natureza, com roedores selvagens como reservatório, agindo como fonte de infecção para humanos e causando a angiostrongilíase neural.


Subject(s)
Animals , Snails/parasitology , Angiostrongylus cantonensis/growth & development , Angiostrongylus cantonensis/physiology , Brazil/epidemiology , Host-Parasite Interactions , Larva/growth & development , Life Cycle Stages , Models, Theoretical
2.
Rev. cuba. invest. bioméd ; 38(1): e100, Jan.-Mar. 2019. tab, graf
Article in English | LILACS, CUMED | ID: biblio-1093374

ABSTRACT

Introduction: Angiostrongylus cantonensis is a zoonotic pathogen that causes human angiostrongyliasis; its main clinical manifestation is eosinophilic meningitis. It was reported in Cuba for the first time in America. Objective: To review the main immunological findings about the human neuroimmune response against this parasite. Methods: This paper is based on a review of the papers mainly from Cuban authors published in the last 10 years about the human neuroimmune response against this helmint. This information becomes more relevant after the introduction of the African giant snail Lissachatina fulica in Cuba in 2014. Results: The humoral immune response is based on the immunoglobulin intrathecal synthesis. When the third-stage larvae go to the central nervous system at the first lumbar puncture there are no major immunoglobulin synthesis. One week later an immune intrathecal response is done by a two-class major immunoglobulin class mainly IgG+ IgA Intrathecal activation of complement is evident of intrathecal synthesis of major immunoglobulins during this disease. The activation of complement system components in cerebrospinal fluid is relevant to the understanding of this tropical disease, which is emerging in the Western hemisphere. Intrathecal synthesis of at least one of the major immunoglobulins and a wide spectrum of patterns may be observed. Although intrathecal synthesis of C3c and IgE is always present, C4 intrathecal synthesis does not occur in every patient. The diversity of intrathecal synthesis and activation of the different complement pathways enables their division into three variant groups. In each one could be finding the activation of one or several complement pathways including the participation of MBL, MASP-2 and ficolins as part of the lectin pathway complement activation. Conclusion: The neuroimmune response against Angiostrongylus cantonensis eosinophilic meningoencephalitis is an example of the host-parasite interaction(AU)


Subject(s)
Humans , Neuroimmunomodulation , Angiostrongylus cantonensis/physiology
3.
Mem. Inst. Oswaldo Cruz ; 110(6): 739-744, Sept. 2015. graf
Article in English | LILACS | ID: lil-763103

ABSTRACT

The aim of this study was to analyse the infection dynamics ofAngiostrongylus cantonensisin its possible intermediate hosts over two years in an urban area in the state of Rio de Janeiro where the presence ofA. cantonensis had been previously recorded in molluscs. Four of the seven mollusc species found in the study were exotic.Bradybaena similariswas the most abundant, followed byAchatina fulica, Streptaxissp., Subulina octona, Bulimulus tenuissimus, Sarasinula linguaeformisand Leptinaria unilamellata. Only A. fulicaand B. similariswere parasitised by A. cantonensis and both presented co-infection with other helminths. The prevalence of A. cantonensisin A. fulicawas more than 50% throughout the study. There was an inverse correlation between the population size ofA. fulicaand the prevalence of A. cantonensisand abundance of the latter was negatively related to rainfall. The overall prevalence of A. cantonensisin B. similariswas 24.6%. A. fulicawas the most important intermediary host of A. cantonensisin the studied area andB. similariswas secondary in importance for A. cantonensistransmission dynamics.


Subject(s)
Animals , Angiostrongylus cantonensis/physiology , Introduced Species , Snails/parasitology , Strongylida Infections/transmission , Animal Distribution , Angiostrongylus cantonensis/pathogenicity , Brazil/epidemiology , Cities , Climate Change , Disease Vectors , Linear Models , Mollusca/classification , Mollusca/parasitology , Rain/parasitology , Snails/classification , Strongylida Infections/epidemiology
4.
The Korean Journal of Parasitology ; : 633-636, 2013.
Article in English | WPRIM | ID: wpr-118763

ABSTRACT

Angiostrongylus cantonensis is a parasitic nematode that needs to develop in different hosts in different larval stages. Freshwater snails, such as Pomacea canaliculata, are the intermediate host, and rats are the definitive host. Periodic shedding of the cuticle (moulting) is an important biological process for the survival and development of the parasite in the intermediate and definitive hosts. However, there are few studies on the cuticle alterations between different stages of this parasite. In this study, we observed the ultrastructural appearance and changes of the cuticle of the 2nd/3rd stage larvae (L2/L3) and the 3rd/4th stage larvae (L3/L4) using a scanning electron microscope. We also first divided L2/L3 into late L2 and early L3. The late L2 lacked alae, but possessed a pull-chain-like fissure. Irregular alignment of spherical particles on the cuticle were noted compared to the L3. Alae appeared in the early L3. The old cuticle turned into a thin film-like structure which adhered to the new cuticle, and spherical particles were seen regularly arranged on the surface of this structure. Regular rectangular cavities were found on the surface of L3/L4. The caudal structure of L3/L4 was much larger than that of L3, but caudal inflation, such as seen in L4, was not observed. These results are the first to reveal the ultrastructural changes of the cuticle of A. cantonensis before and after moulting of L2/L3 and L3/L4.


Subject(s)
Animals , Angiostrongylus cantonensis/physiology , Larva/physiology , Microscopy, Electron, Scanning , Molting
5.
Mem. Inst. Oswaldo Cruz ; 102(1): 49-52, Feb. 2007. ilus, tab
Article in English | LILACS | ID: lil-440630

ABSTRACT

Introduction of Achatina fulica in Brazil has led to serious concerns about its role as vector for metaIylid worms: AngioIylus costaricensis and A. cantonensis. Experimental infection with both parasites was performed to evaluate the potential risk for their transmission by the giant African snail. Groups of 5 animals, both wild and bred at captivity were exposed at different inocula: 1, 5, and 10 ´ 10³ L1 of A. costaricensis and A. cantonensis. In all groups, few snails got infected and parasitic burden was low. Two different ways of infection were tested: ingestion produced higher numbers of L3 than the inoculation through an artificial hole in the shell. We also report the parasitological examination of 6 batches of wild A. fulica from Florianópolis, state of Santa Catarina, Brazil: only 1 out of 244 animals were infected with metaIylid larvae. Taken together these data indicate that the giant African snail occurring in Southern Brazil is not a permissive host for both AngioIylus species and does not represent a significant risk for transmission of these parasites.


Subject(s)
Animals , Rats , Angiostrongylus/physiology , Snails/parasitology , Angiostrongylus cantonensis/physiology , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL